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Summary. The mathematical equations for the transport of nonelectrolytes across cell 
membranes are critically examined and cast in forms suitable for solution which involve fewer 
approximations than has heretofore been commonly done. For the case of red cells, the 
equations are developed to include the effect of the variation in apparent nonosmotic water 
owing to the variation in hemoglobin concentration as the cell swells or shrinks. Two methods 
of solution of the equations are developed and studied and sample calculations are provided. 
It is shown that the solutions to the linearized equations commonly found in the literature 
are insufficiently accurate for some purposes and this inaccuracy is avoided by the methods 
given here. The importance of retaining the effects of variations in apparent nonosmotic 
water and in solute volume in the cell is demonstrated. 

The  m e m b r a n e  permeabi l i ty  equa t ions  are ma themat i ca l  express ions  

for the flow of  solutes and solvents f rom one side of a m e m b r a n e  to the 

o ther  when there  is some driving force across the membrane .  These  

equa t ions  are par t icu la r ly  useful in de te rmin ing  m e m b r a n e  proper t ies  by  

means  of combin ing  exper imenta l  results with some aspects of the equa t ions  

which can, in principle,  range  fi 'om an initial flow rate to the comple te  

solut ion.  

In a typical  exper iment  that  is often done,  cells are suddenly  put  in 

a non i sosmola l  solut ion,  and their  vo lume  change as a funct ion  of  t ime 

is measured .  Such a measu red  funct ion  contains  an e n o r m o u s  a m o u n t  

of informat ion .  In principle,  all of the m e m b r a n e  permeabi l i ty  pa rame te r s  

could  be de t e rmined  f rom such a m e a s u r e m e n t  if the permeabi l i ty  equa t ions  

could  be solved. The  r equ i r emen t  would  be to find those values of the 

m e m b r a n e  pa rame te r s  for which the solut ion of the permeabi l i ty  equa t ions  

for cell vo lume  vs. t ime matches  the measu red  function.  In pract ice,  the 
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ability to do this is limited by errors of three types: (1) limited accuracy 
of experimental measurements; (2) inaccuracy in the representation of all 
the cellular processes affecting membrane permeability in the form of 
mathematical equations; and (3) inaccuracy in the mathematical solutions 
of the permeability equations. 

In this paper, the membrane permeability equations are critically 
examined and formulated in a way that minimizes errors of the second 
type. Then the mathematical process of solution of the equations is 
studied and methods of solution which minimize errors of the third type 
are presented along with sample calculations. The means of utilizing the 
equations and solution methods given here, to determine the membrane 
parameters from experimental measurements, will be given in a subsequent 
paper. 

The most complete derivation of the equations for the permeability 
of membranes to nonelectrolytes was given by Kedem and Katchalsky 
[10]. In this derivation several small effects were ignored, and a complicated 
expression for the difference in solute free energy across the membrane 
was replaced by a simplified approximate form. 

Since the time of the Kedem and Katchalsky derivation, the equations 
have been solved approximately for several cases. These approximate 
solutions have generally taken one of two forms. First, Solomon and his 
co-workers [6, 16, 17] have used the form of the Kedem and Katchalsky 
equations to deduce certain membrane parameters from a few particular 
features of the graph of cell volume vs. time after a red cell has been put 
into a nonisosmolal solution. The determination of the human red cell 
osmotic reflection coefficient by Goldstein and Solomon [6] has recently 
been questioned by Levitt [11] and by Owen and Eyring [12] who presented 
their own determinations of the reflection coefficient. These latter deter- 
minations have been questioned by Solomon, Milgram and Kirkwood 
([18] and in preparation). As a result of these publications, it has become 
apparent that the correct determination of red cell reflection coefficients 
is an unsettled issue at this time and steps are being taken to resolve it. 
One step is the detailed analysis of the membrane permeability equations 
and the methods of solving them that are presented here. These methods 
were used by Solomon et al. ([18] and in preparation) to obtain some of 
their results, but the analysis and development of the methods presented 
here was not given in the aforementioned references. 

The second form of approximate solution is the mathematical calcu- 
lation of the cell volume as a function of time for an approximate form 
of the Kedem and Katchalsky equations. In most cases, solutions have 
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been obtained for the strictly linearized approximation to the equations. 
Johnson and Wilson [8] have given details of one method of solution of 
the strictly linearized equations and showed the effect of certain parametric 
variations on these solutions. Farmer and Macey [2, 3] have related the 
solutions of the linearized equations for cell volume v s .  time to the measured 
volume v s .  time function after red cells were placed in a nonisosmolal 
solution in order to estimate cell membrane parameters. 

Hempling [7] programmed the Kedem and Katchalsky equations on 
an analog computer and was able to find values for the membrane param- 
eters which gave good correspondence between the computed cell volume 
v s .  time and measurements on mouse ascites tumor cells. Although 
Hempling's analysis contained all the approximations made by Kedem 
and Katchalsky, it did not require the linearized approximation of the 
equations used by several other investigators [2, 3, 8]. 

The now widespread availability of digital computers makes digital 
computation potentially the most convenient and accurate method of 
obtaining solutions to the membrane permeability equations. Not only 
can solutions be obtained quickly and easily, but the equations can be 
programmed without recourse to some of the approximations made in 
the past. 

We have found that several effects that are normally neglected can 
significantly influence cell volume time histories. Therefore, the membrane 
permeability equations are derived here without discarding effects that 
are considered to be small and discarded in other treatments. Also, the 
exact form for the solute-free energy difference across the membrane is 
retained. In applying these equations to red cells, the fact that the apparent 
volume of solvent that does not participate in dissolving electrolytes 
varies with cell volume is taken into account, something which hasn't 
been done in previous work. This results in a pair of coupled, first order, 
nonlinear differential equations for the cell volume and amount of solute 
in the cell as functions of time. 

The most straightforward method of solving these equations is by 
direct numerical integration on a digital computer. This method necessarily 
requires that the continuous process of integration be approximated by 
a discrete process with finite time steps. To gain confidence that one is 
using small enough time steps, numerical integrations are often done at a 
number of time step sizes with the size considered small enough when a 
size reduction does not result in a significant change in the solution. 
However, more confidence can be gained if the solution can be compared 
with that obtained by an entirely different method. Therefore, another 
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method of solution is given as well. This is a perturbation expansion of the 
equations which leads, in principle, to an infinite sequence of sequential 
sets of linear problems. For most cell membrane problems, the contribu- 
tion from each succeeding set of equations diminishes rapidly enough 
for only the first few sets of equations to be important. The first and second 
order perturbation equations are developed and solved here for a restricted 
set of conditions. The first order equations and solutions are identical to 
the linearized equations and solutions given in references 2, 3 and 8. 
However, evaluation of the solutions for a typical case shows that the 
second order effects are large enough for the first order equations and 
solutions alone without the second order contributions to be inadequate 
for many purposes. 

The perturbation solutions are used here as a basis for comparison 
with direct numerical integration solutions. The combined first and second 
order perturbation solutions agree well with the direct numerical integra- 
tion solutions, and this comparison gives confidence in the direct numerical 
integration solution. Once this confidence is obtained, the direct integration 
method is preferred because of the broader set of cellular conditions that 
it can easily accommodate. Although the numerical integration is easily 
carried out with a digital computer, it would be very tedious without a 
computer. On the other hand, the first and second order perturbation 
solutions are obtained in closed forms that can be evaluated in a straight- 
forward way without a computer, albeit more convenient with a computer. 
Therefore, if a computer is not available, the perturbation method offers 
a relatively convenient way of obtaining solutions. 

The next sections present the derivation of the membrane permeability 
equations and methods of solving them. Appendix C is a description of 
how the equations and solutions can be used. 

1. Derivation of the Membrane Permeability Equations 

Consider a membrane-bound cell as shown in Fig. 1. The cell contains 
and is immersed in a solvent and several solutes. Some of the cell volume 
is not solvent, and this volume is denoted by B w. For example, by means 
of drying human red cells, Savitz, Sidel and Solomon 1-15] found that in 
the isosmolal condition, 28.3 ~o of the cell volume was not solvent. The 
temperature of the entire system is a constant. 

It is well known that some cells appear to respond osmotically as if 
some of the solvent were not participating in dissolving all of the solutes. 
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Fig. 1. Definition sketch 

Some of this effect can be due to solvent bound to macromolecules in the 
cell as shown by Gary-Bobo [4]. In the case of red cells, however, the 
apparent nonparticipating solvent for apparently impermeable electro- 
lytes in the cell is far too large to be due to bound solvent. It has been shown 
by Gary-Bobo and Solomon [5] that the effective net charge of the hemo- 
globin is concentration dependent and, as the cell volume changes, the 
changing hemoglobin ionization results in an actual chloride (C1-) 
transport through the membrane. This type of transport is not usually 
considered in the membrane permeability equations and can be handled 
in these equations in one of two ways. One way is to include explicitly the 
change in ion concentration inside the cell in the equations. The second is 
to follow the method of Savitz, Sidel and Solomon [15] who defined an 
apparent nonparticipating solvent volume which corrected the osmotic 
pressures for this effect. Gary-Bobo and Solomon [4, 5] have shown that 
this apparent nonparticipating solvent volume varies considerably with 
changes in cell volume in the case of the red cell. Therefore, this variation 
should be taken into account in the equations when this method is used. 
The second way will be used here with the apparent volume of solvent not 
dissolving the jth solute called Bj. Then the apparent volume of solvent 
dissolving the jth solute is V-B,,,-Bj. 

The jump discontinuity of any quantity, q, across the membrane is 
called A q. Thus, A q =q outside - q  inside. The energy dissipation function, 
4, as derived from classical irreversible thermodynamics (see, e.g., 
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Katchalsky and Curran [9]) is: 

K 
r ~ J~A#j. (1) 

j=l 

It is shown in references 9 and 10 that 

A pw= 17w(AP- A rO. (2) 

For an ideal solution the osmotic pressure is given by: 

K 

7~ Vw j=1 

where xj is the mole fraction of the fh solute, and for ionized solutes each 
ionic species is counted separately. Expanding the logarithm in a Taylor 
series gives: 

= xj + . . . .  (4) 

The phenomenological equations introduced subsequently are most 
useful if z is approximated by just the first term in the Taylor series [4]. 
The error introduced by this approximation can be estimated by evaluating 
the second term. For the solute concentrations encountered in most 
physiological situations, this error in rr is very small indeed; being only a 
small fraction of one percent, x/17,, is the concentration of the j th solute 
in terms of molality and will be denoted by cj. Using the molarity instead 
of the molality, as is commonly done with the Van't Hoff Law, leads to 
both practical and theoretical errors. The practical error is that for many 
physiological situations, the error in calculated osmotic pressure can be 
several percent. The theoretical error in using molarity instead of molality 
is that A #j will not be a state variable in the formulations used here. 

Eqs.(3) and (4) become correct for real solutions, as opposed to the 
restricted case of ideal solutions if concentrations are expressed in terms 
of osmolality, as this takes the osmotic coefficients into account. In most 
membrane permeability experiments, the various concentrations change 
during the course of the experiment. In the following theory, concentrations 
during an experiment are determined from initial concentrations and the 
amount  of solute and solvent transport during the experiment. If the initial 
concentrations are taken in terms of osmolality and the osmotic coefficients 
are constants during the experiment the nonideal solution effects will 
cause no errors. The percentage errors due to nonideal behavior will be 
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of the same order of magnitude as the percentage variation of the osmotic 
coefficients over the course of the experiment. For  example, considering 

some of the typical solutes used in red cell experiments we find [14] that 
the osmotic coefficient at 25 ~ for sucrose in water increases by 0.7 ~ when 
the molality is increased from 0.2 to 0.3. For the same conditions the 
osmotic coefficient of a sodium chloride in water solution decreases by 
0.3 ~.  F rom [19] the osmotic coefficient of urea and water solutions over 
molalities from 0.1 to 0.5 is constant to within a fraction of a percent. Thus, 

variations in osmotic coefficients can usually be neglected. Keeping in mind 
the fact that cj is to be taken as osmolality: 

K 

E ( 5 )  
j = l  

with 

Azcj=RTA cj. (6) 

References [9] and [10J use the Gibbs-Duhem equations to derive the 
following expression for A #j: 

A #j = l~ A P + R T(ln cy - In c~). (7) 

This can be shown to be correct if the concentrations are expressed in 
terms of osmolality. 

We now define ~j as follows: 

Eq. (7) then takes the form 

/1 Cj 
- -  , . (8) cJ l n c ] - l n c j  

 ;ZP+RT _ ej . (9) 
cj 

In much of the literature Cj is approximated by i o (cj + cj)/2. This approxima- 
tion is accurate when o i ~  cj/c d~/, a condition that is not always satisfied in 
membrane  permeability experiments. 

This dissipation function can be written as: 

j = l  j = l  
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The definitions for the volume flow J, and the solute flows with respect 
to the solvent flow JDj, are then made as follows: 

K 

J , = J ~  V~+ ~ Jy~ (11) 
j = t  

1 
JD, = ~ Jj - Jw 17. (12) 

As in other work [9, 10], the phenomenological equations are introduced 
here. 

Jr=LeAP+ ~ LejAn j (13) 
j = l  

K 
JDj=LjeAP+ ~ LjlAnl, (14) 

1=1 

along with the Onsager reciprocal relations 

Ljl = Llj (15) 
and 

]-'Pi = L i p .  (16) 

The basis of these equations is described in references 9 and 10. 
As is usual, we define 

Lpj 
% -  Lp (17) 

so that 
K 

J~=LeAP-L e ~ r (18) 
j = l  

K 

JDj = -LeajAP+ ~ LjlAnl. (19) 
/=1 

Since the Jfs rather than the JDfs are the quantities most readily deter- 
mined in an experiment, a useful expression is: 

K 

Jy+cy ~ Jl~-=cj(JD,§ (20) 
l = l  

Eqs. (18) and (19) are identical in form to those given by Katchalsky and 
Curran [9J, except that here all the equations have been generalized to 
the case of many solutes. The differences lie in consistently interpreting all 
concentrations as osmolality and in keeping the exact expression for 
~j, Eq. (8). 
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3. The Case of a Single Solute 

The case of a single solute permeat ing a cell is the simplest si tuation 
to b.e considered. For  this case k = 1, and the solute is designated by the 
subscript s. The following definitions are used: 

o- _~ cr 1 

LD=-Lll =-Lss 

CO =----cs(LD-- r7 2 Lp). 

(21) 

(22) 

(23) 

Then Eqs. (18) and (20) become: 

J v = L p A P - L p a A ~ z  

and 
Js(1 +~s) =Cs(1 - o) Jv +co Arc 

where 

~)s=Cs gs" 

(24) 

(25) 

(26) 

The term (1 + r  in Eq.(25) is absent in the Kedem and Katchalsky 
equations (where it has the implicit value of 1). Cs is usually much  smaller 
than unity so the error in t roduced by its absence is small. However, as 
will be shown subsequently, in the solutions of the equations, there is no 
penalty in keeping q~s; and, since the equations are more  accurate with 
it, it will be retained. 

The membrane  parameters L e, cr and co can depend on all the inde- 
pendent  condit ions:  namely, the particular membrane,  the type of solvent, 
all the solute concentrat ions,  and the cell volume. The meaning of the 
phenomenolog ica l  equations, however, [9], is that the membrane  param- 
eters do not explicitly depend on the flows, J.,, Jr, ds or JD" 

At this point, it is appropria te  to examine the nature of the dependence 
of L D and co on the solute concentrat ion for two specific cases. 

It has been pointed out by Katchalsky and Curran [-9] that for an 
ideal semi-permeable membrane  (one which passes no solute), o-=1, 
co = 0, and LD = Lp. For  such a membrane,  if Lp is independent  of solute 
concentration, L D is also independent  of solute concentrat ion.  

As the second case, consider a si tuation where AP and A rc are adjusted 
such that  Jv=O across a membrane  that  obeys Fick's Law, Js=DA~z, 
where D is the diffusion coefficient. For this case co=D so that  

LD = (co/-ds) + a2 Lp. 
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It is impossible for both co and L D to be independent of Cs in this case. 
Because of the logarithmic terms in the definition of ~s (Eq. 8) the depen- 
dence of LD or co on permeable solute concentration can be very strong. 
Thus, we find that different types of membranes can have grossly different 
forms of the dependence of L ,  or co on solute concentration. 

3. The Case of One Permeable Solute and Several Impermeable Solutes 

Many cell membrane permeability experiments described in the 
literature are for one permeable solute and several impermeable solutes 
(c f  References 2, 6, 8, 16 or 17). Since the only effects of an impermeable 
solute are contributions to the osmotic pressure and the solution volume, 
with no permeation of the membrane by definition; the presence of several 
impermeable solutes is no more complicated than the presence of one 
impermeable solute. 

The permeable solute which is restricted here to a nonelectrolyte will 
be denoted by the subscript 1 and the impermeable solutes by subscripts 2 
through k. For this case, 

a 1 ~ a (27) 

a j =  1, j = 2 ,  3, ..., k (28) 

Jj = O, j = 2, 3, ..., k. (29) 

Because of the nearly identical effects of hydraulic pressure and osmotic 
pressure due to an impermeable solute, a modification to the general 
permeability equations is made for this case. The thermodynamic potential 

jumps are: 

RT Ac 1 
A ~ -  + ~ AP (30) 

and 

where 

A #~= 17w(AP- A T~,,- R T Aq)  (31) 

k 

A~,,= ~ RTAc j  (32) 
j = 2  

Eq. (1) takes the form 

q~=.lw A #w + J 1 A #I . (33) 
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However, the dissipation function, q~, can be described by the sum of any 
pair of products of flows and forces, where the flows are any independent 
pair of linear combinations of Jw and J1, and the "forces" are the natural 
conjugate "forces" to these flows. In particular, the most convenient flows 
here are Jv and J/)l. The conjugate forces will be called Xv and XD1. Thus, 

@=J,X~+ Jo, XDc (34) 

Using Eqs. (11) and (12) then gives: 

cl)=(Jw lTw + J 1 ~) Xv-t- (~I JI - Jw ITw) XD,, (35) 

and combining Eqs. (33) and (35), we have: 

Jw(I7wXv-ITwXo~-A#w)+Jl (ITa X v + l  XD,-A#x)=O. (36) 

Since Eq. (36) must hold for arbitrary values of Jw and J~, the coefficient 
multiplying each flow must be zero. Thus, 

17wXv-17~Xo,= A#w (37) 
and 

1 
I71 Xv+ ~ XDI=A#~. (38) 

Solving for Xv and XDI gives 

X v - , ( 1  1 1 + ~ 1  ~ w Z l # w + - d l A # l  (39) 

and 

C1 (z~,l.lw - g~-I A#w] (40) 
XD'-- 1 _ ~  1 \ V w ] 

where, 
~1 =C1 gl. (41) 

Using the expressions for A#~ and d#t ,  given by Eqs. (30) and (31) gives 

and 

1 
Xv = A P - ~ A 7r,, (42) 

i+~: 

X D I = R T  Ac  I ~ - - ~  Arc m . (43) -r- q) 
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The phenomenological equations for these flows and "forces" are: 

Jv=Le (AP 1 Anm)+LpD (RT Aq-~ ~ An,.) (44) 
l+q~, 1 7 b ,  

1 n,.)+ Lo(RTAc l 1 JD=LpD(AP 1+q~1 A - / - - + ~ 1  AG,, ) (45) 

The Onsager reciprocal relation [16] holds and a is defined by Eq. (17). 
As in the single solute case, co is defined by: 

o) = ct (LD -- a2 LP). (46) 
Then, 

Jr( 1 +~t )=Cl  (JD1 q-Jv) (47) 

and upon substitution for J91, we have 

J1-  l + ~ b ~ l [ - d l ( 1 - r T ) J v + ~  (48) 

Eq.(48) is somewhat different than the corresponding Kedem and 
Katchalsky equation [10]. If the two denominators (1 +~1) in Eq. (48) 
are set equal to unity, the resulting expression is identical to that given by 
Kedem and Katchalsky. However, if q~l is ignored as (1 +q~t)=l would 
imply, then the last term would have to be dropped, and this was not done 
by Kedem and Katchalsky. For a consistent expansion in q~, the first 
order approximation to Eq. (48) would have to contain all terms of the 
order of q~,. This approximation is: 

JI=(1-~I)[~I(1-~)Jv+ooRTAcl]+co~IAnm. (49) 

For many membrane permeability situations, conditions are such that 
the equations correct to zeroth order in ~b, are quite accurate. This accounts 
for much of the success of the Kedem and Katchalsky equations that has 
been reported in the literature. 

4. The Form of the Equations for Cells 

Rand and Burton [13] have indicated that AP is negligibly small 
for red cells. It seems likely that this is the case for most membrane bound 
cells, and AP will be set to zero here. The cells will be considered to be 
immersed in a solution containing a single permeable solute and one or 
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more impermeable solutes. Eqs. (44)and (48) are first multiplied by the cell 
surface area, A; so they become the equations for d V/dt, the rate of change 
of cell volume; and dS/dt ,  the rate of change of permeable solute in the cell. 
Vo is an arbitrary constant volume, and Co is an arbitrary constant concen- 
tration used to partially nondimensionalize the equations. Then, Eqs. (44) 
and (48) become: 

dt  = K 1  l+qSa A r r m - a  A c - l - a  1 + - ~  An_~ (50) 

and 

where 

dS_ 1 [ dV ( (J, )] (51) 
dt -1+< ~-l(1-~ +K2 A<+ l+~7~m 

V =  V / V  o (52) 

c l = q / c  o (53) 

C-1 = Cl//Co (54) 

~,. = rcm/RTc o (55) 

S = S / V  o c o (56) 

K t = L p  A R T c o / V  o (57) 

K 2 = o ~ A R T / V  o . (58) 

It will be assumed that the Bj's a r e  the same for all the impermeable 
solutes, and this value will be called B 2. If B 2 serves as a correction for ion 
transport as explained in w 1, it will be a function of cell volume in general 
as shown by Gary-Bobo and Solomon [5]. Nondimensional quantities a 
and/2 are defined here such that the apparent volume of solvent dissolving 
the permeable solute is V - a  Vo, and the apparent volume dissolving the 
impermeable solute is V-_b V 0. This defines a and b as: 

V Bw + B1 
a : . 7  (1 - 4>w) + qSw (59) Vo Vo 

and 

V 

b=VoO-~O+<~ 
Bw + B2 

vo (60) 
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In general, a and b depend on the various solute concentrations and 
the cell volume. By taking the reference concentration, co, as the sum of 
the impermeable solute concentrations outside the cell, the permeability 
equations take the most easily used form. The values of _a and _/2 when the 
cell volume is V0 are called a and b. Then, 

1 - b  
i (61) 

~m-- V - b  

and Eqs. (50) and (51) become: 

and 

dV [ l + a q ~ l  1 - b  aS l+aq~l a_c ~ (62) 
dt =K1 1 +q51 V - Y  + V - a  1 +~1 

dt - l+q51 d 7  +K2  -c~ 1+4;,  V - a  l+q~ 1 _V-_b " 

(63) 

Equilibrium is the condition for which both dV/dt and dS/dt are zero. 
Calling the dimensionless volume at equilibrium g eq, and the values of 
a and b at equilibrium a eq and b eq, we have: 

and 

1 - b  
V eq = b eq -t- - -  (64) 

- 

_S.q = (Veq __ aeq) _cO. (65) 

Here, the most convenient choice for Vo is V eq for which: 

V eq ~ 1, 

b eq = b 

and 

(66) 

(67) 

X eq ~- (1  - -  a )  _c ~ . ( 6 8 )  

Eqs. (62) and (63) are a pair of coupled, first-order, nonlinear differential 
equations. An unique mathematical  solution for these equations exists, 
and this is discussed in Appendix A. Two methods of finding solutions 
will be described in the following sections. 
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The most straightforward method of solving the equations, if a digital 
computer is available, is by direct numerical integration by means of a 
Runge Kutta method or a variation of such a method. This can be done 
for any initial conditions and any functional dependence of the membrane 
parameters (Lp, o- and co) and _a_ and b on the cell volume and the various 
concentrations. However, it is not known d priori if the method will 
converge for acceptable integration time steps. Even if it appears that 
numerical convergence has been achieved, it is still not certain that 
convergence to the correct solution has occurred. 

Eqs. (62) and (63) can also be solved by means of a perturbation series 
of successive linear problems. A solution to each higher and higher order 
problem exists in closed form, but it is not certain that the sum of these 
solutions converges to the actual solution. However, if the first order 
perturbation solution converges to the direct integration solution as the 
perturbation from equilibrium is made arbitrarily small, and if, for larger 
perturbations, the sum of the first and second order solutions is much 
closer to the direct integration solution than is the first order solution 
alone, one attains enough confidence in the methods to believe the solutions 
so found are accurate approximations to the correct solution. 

The aims of deriving and solving the perturbation equations here 
are: (1) to demonstrate the perturbation method as simply as possible; 
(2) to compare solutions of the perturbation equations with direct numerical 
solutions to confirm the validity of both methods; (3) to show that the 
linearized equations and their solutions alone are inadequate for many 
purposes; and (4) to provide solutions in forms that can be evaluated by 
computer or by hand which are accurate for a variety of red cell perme- 
ability situations. 

These aims are best met here by deriving and solving the perturbation 
equations for the restricted conditions of constant membrane parameters 
and small enough solute volume fractions to allow ~b~, the volume fraction 
of solvent to be approximated by unity in Eqs. (59) and (60). Approximating 
~b w by unity does not necessarily set a and _b to constants because B 1 and 
B 2 may vary during the course of an experiment. However, it has been 
shown by Gary-Bobo [4] that B1, which is the solvent volume not partici- 
pating in dissolving the permeable solute, is constant (and nearly zero) 
for red cells. On the other hand, B 2 is not constant for red cells as shown 
by Gary-Bobo and Solomon [5]. Fig. 2 shows the relationship between 
B 2 and cell volume. This figure is based on the nonsolvent volume measure- 
ments of Savitz, Sidel and Solomon [ 15] and the apparent nonparticipating 
solvent measurements of Gary-Bobo and Solomon [5]. 
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Reference 5 

Fig. 2 shows that B 2 depends on V in a nonlinear way for the range 
of cell volumes encompassed by the figure. Typically, the cell volume 
varies by about 20 ~o in a cell permeability experiment. Over such a volume 
range, the relationship between B2 and cell volume can be approximated 
accurately by a linear function, as shown in Fig. 2, but it cannot be ap- 
proximated accurately by a constant. A linear relationship can be ac- 
commodated very easily into the perturbation equations. With q6 w ap- 
proximated by Unity and B 2 linearly dependent on V, h is a linear function 
of_V [Eq. (60)], and since V eq = 1, b can be expressed as: 

b = b - b'  ( V -  1). (69) 
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In the permeability Eqs. (62) and (63), b appears only in the expression 
(1-b) / (V-b) .  With substitution of Eq. (69) this takes the form (1-be) / 
(_V- bc) where: 

b - b '  
be-- ~--b '"  (70) 

Therefore, replacing both the constant b and the variable b in Eqs. (62) 
and (63) by the constant bc is an accurate simplification when ~ b ~  1. 

The normalizing volume used here is the volume of the cells at equilib- 
rium in the final solution into which they have been placed. Often, however, 
the cell and nonsolvent volumes are not initially known at this condition, 
but rather are known at some other equilibrium condition. This will be 
called the isosmolal condition, designated by the superscript iso, because 
it is often the physiological isosmolal condition. In order to relate the 
normalizing volume, V0= V eq, to the isosmolal cell volume, V iS~ the 
relation between B 2 and V must be known. Here it will be assumed that 
this can be approximated by the following linear relationship over the 
range of cell volumes for the experiment, 

B2 = B  2iso + B '  ( V -  vis~ (71) 

Then the required relation between V eq and V iS~ is: 

~  _ , ] 
[Lc~ q (V - B  2 ) - B  V~~ ~~ [1+0~ q] 

-B~ q q S ~ @ / { 1 - B ' - B '  (~q} 
) /  

where: 

siso iso (viso iso =Cl -B1 ). 

(72) 

(73) 

To solve Eq. (72) for V eq requires specification of B~ q (~q. Gary-Bobo 
I-4] has shown that for most red cell experiments, B 1 is very small. Since 
most of B 1 is the solvent bound to macromolecules in the cell, and the 
number of these do not change during a permeability experiment, the 
variation in B1 during an experiment will be even smaller than the mean 
value orB 1. Hence, " iso lfB 1 is known, this value can be used forB~qin Eq. (72). 
Generally, an accurate approximation for V eq results even if B~ q is set to 
zero in Eq. (72) inasmuch as the term B~ q ~ q  is exceedingly small. 

By includes the volume displaced by the solutes in the cell. B~ ~ is 
usually determined by drying cells initially in the isosmolal condition. 
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5. First and Second Order Perturbation Equations and Solutions 

These equations are most easily derived in terms of deviation of cell 
volume and amount  of internal solute from their equilibrium values. Let, 

G = V -  V eq (74) 

H = S  -_S eq. (75) 

Then, the permeability equations with _a and b given the values a and bc 
have the form: 

dG [ l -a01  G H - G c  ~ (76) 
dt =KI 1+41  1 - b  c + G  ~-a l + G - a j  

and 

dH 1 [  , 
dt - 1-t-(/51 ~ l (1 -~  -1761 l+G-b~ -~ l + G - a  

The problem to be considered is that of a cell with arbitrary values of 
G and H at t ime=0,  called Go and H0, and with constant values of all 
external concentrations. If G o = H0 = 0, the concentrations are in equilib- 
rium and dG/dt=dH/dt=O. For small values of G o and H 0, linearized 
approximations of (76) and (77) can be expected to be accurate, being more 

and more accurate as Go and Ho are made smaller and smaller. The solutions 
to the linearized approximations of (76) and (77) are called first-order 
solutions and are denoted by G m and H (1). They will have terms proportional  

to Go and terms proportional to Ho. 
As Go and H o are increased, the first order solutions will have reduced 

accuracy. Usually, improved accuracy can be achieved by adding second 
order solutions to the first order solutions. The second order solutions, 
called G (2) and H (2) have terms proportional to G 2 and H 2 and Go Ho. 
This procedure can be carried out indefinitely with the equations for 
any order being derived by a systematic procedure from Eqs. (76) and (77). 

It will be demonstrated that for typical values of G o and H 0 in mem- 
brane permeability experiments, fairly large errors can result if only 
first order solutions are used, but if second order solutions are used as 
well, errors will be reduced to a few percent. 

Let 

G (t) = e_G (1~ (t) + e2 _G(2~ (t) +- . .  (78) 
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and 

where 

and 

H(t) =eH_ (I) (t) + ~2 /_/(2) (t) + ' "  (79) 

e' _G (") (t) = G (") (t) (80) 

e" H (") (t)= H (n) (t). (81) 

It is assumed that there will always be some apparent solvent available 
to the solutes in the cell so that the terms 1 + G -  a and 1 + G - b appearing 
in Eqs. (76) and (77) are always positive. Then the perturbation expansions 
will be regular perturbations from equilibrium. The equations for such 
an expansion are determined by substituting the expressions (78) and (79) 
for G and H into the differential equations and then collecting terms in like 
powers of s. A solution is sought for arbitrary s so that equality must hold 
between terms of each power of e separately. 

Equations and solutions for the first and second order variables, 
G (1), H m, G (2) and H (2) will be given here for the restricted case of constant 
LI,, G and co. To facilitate writing these, the following definitions are made: 

2 (0) =_c ~ (82) 

,~(1) 1 o (  H(I,  a( l )  ) 
- �9 - ( 8 3 )  - 2  -c1 _s eq 1 - a  

1 
f i ( o ) _  (84)  

t + 4  ~ 

f i (1 ) -  CO ~71 z(1) 
(1 +~o)2 (85) 

o-+fi(~ 0-2 (0) 
511 = (86) 

1 - b  c 1 - a  

G 
- (87)  612 1 - a  

[ 1 - f i  (~ 2(0) \ 
~521= fi(~ K2 i - - ~  ~ - T )  (88) 

fi(o) & 
6]22 -- 1 - a (89) 

~(o)= fl(o) 2(o)(1 _ a) (90) 

~(1)= (1 - o) (2 (o) rio)+ 2(1)/3(o)). (91) 
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Using the procedure described above for the first and second order 
equations gives: 

where: 

and 

dG(X) 
dt 

dG (2) 

dt 

dH (1) dG (1) ~2(o) 
dt dt 

dH (2) dG (2) ~(o) 
dt dt 

K1((~11 G (1) -[-812 H (1)) = 0  (92) 

- - -  K1 ((~11 G(2)+ 512 H (2)) =fv(t) 

(521 G(1)--(~22 H(1)_-0 

~21 G(2)--1522 H(2)----fs(t) 

(93) 

(94) 

(95) 

[ + #(~ _ 
fv(t) K1 [ 

a [ 2 (0) G O? 

+ 1 ~  ( 1 - a  

1- (7  G(1)2 _ _ _  fl(1) G(1) 
1-bc 

H(1) G(1) ) ] 1 - a  

[ 1 (2(~ H~ (1)) 
fs(t)=-fi(~ ~ - a  X-a l : a  

/~(1) G(1) ] dG o) 1-fi(~ G (1)2 + + ~ ( 1 )  
-~ (1 - be) 2 i=~-~ dt 

fi(') K2 [ 1 -  fi(o) G(1, 1 ~ ( H( I , -  .~(0)G(1,)] 
[ 1 - b e  1 - a  

(96) 

(97) 

To solve these equations, the first order equations for G (1) and H (1) are 
solved subject to the initial conditions: 

and 
G (')(0) = Go (98) 

Ha)(0) = H o (99) 

Then, G (1), H (1), fi(1), 2(1) and a(1) are known so that f,(t) and f~(t) are known 
and the second order equations can be solved. 

6. Solution of the First Order Equations 

The first order Eqs. (92) and (94) are identical to the equations of 
Macey and Farmer [1, 2] and Johnson and Wilson [-8] if _C 1 in their 
treatments is given the value C ~ A means of solution to the first order 
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equations is given here which forms a consistent basis for solution of the 
second order equations in w 7. 

The first order equations will be solved by use of Laplace Transforms 

and the superscript* will be used to represent transformed quantities. For  

example, co 

G(t) e-pt  dt  - G*(p). (100) 
0 

Taking transforms of the first order equations gives: 

G*(K t 5 u - p ) +  H * ( K  1 512) = - -  G O (101) 

G*(c~(~ + 621) + H* ( 6 2 2  - - p )  = ~(0) GO -- Ho. (102) 

0.02 
(3 (a) 
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Fig. 3. Cell volume vs. time for first sample case, calculated by perturbation theory and by 
direct numerical integration. The quantities shown are the differences between normalized 

cell volume and normalized cell volume at equilibrium 
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Fig. 4. Quantity of permeable solute in cell vs.  time, calculated by perturbation theory and by 
direct numerical integration. The quantities shown are the differences between normalized 

amount of solute in cell and its value at equilibrium 
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Fig. 5. Time steps for direct numerical integration. A t~ = Basic time interval 
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We now make the definitions: 

~I~* =�89 (K1 321 -{- ~22 -~- ~(0} K~ 012) 

___ ]f4!~K~, 32, +32e +c~ ̀~ K, 3, 2)2 - K1(811 ~522--312 821 ) 

.~g = K1 322 Ho-(K1 312 0~(~ @ 322) Go 

~h =(cd~ K1 ~11 + ~21) G o -  K1 311 Ho. 

Then solving for G* and H* gives: 

G*(p) = Go p + ~g 

( v - , h )  (p - ,7 9 

Ho P + ~h 
H*(p)  = (p-<) (p-~.) 

Taking inverse transforms then gives the first order solutions 

0, t < 0  

G(1)(t) = rh Go+~g enlt.+ /72 Go+~g en2t, 

0, 
H(1)(t) = t]lHoq-~h tl2Ho+~ h 

t12 - q~ 

t>O 

t<O 

t>O 

Figs. 4 and 5 show graphs of these functions for a sample case�9 

(103) 

(104) 

(105) 

(106) 

(107) 

(108) 

(109) 

7. Solution of the Second Order Equations 

The first order equations can be written as: 

5all G(1)+Y12 H(1)=0 

5O21 G(1) q- 5O22 H(1) =0  

where, 
d 

2"~ - d [  K1 6.1 

2'712 = - K  1 312 

5o21 = _~(o~ d ~7-62, 

d 
5O22 =---- ~ - -  322" 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 
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Whereas, the first order equations are homogenous linear equations, the 
second order equations are inhomogenous linear equations containing 
the same linear operators as the first order equations, namely, 

s  G(2)+ 5a2 H(2)__f~(t) (116) 

~(5021 G(2)+ ~a22 H (2) =fs(t), (117) 

subject to the initial conditions, 

G(2)(0) = H(2)(0) = 0. (118) 

G (2) and H (2) will be found by use of the set of Green's Functions R,~, 

R12 , R21 and R22 such that 

t t 

G(2)(t) = ~ Rlj (t, 7) f~(~) dz + ~ R12(t, 7) f,(z) dz (119) 
o o 
t t 

H(2)(t)= ~ R2a(t,~)fv(~)dr+ ~ R22(t,r)fs(~)d~. (120) 
o o 

The R's satisfy the same initial conditions as do G (2) and H (2), namely, 

Rq(O, T) = 0, (121) 

and the R's satisfy the equations: 

~'Q'~I 1 g l l  -kS12 R21 =~5(t-'c) 

~21 Rll -}- ~('22 R21 = 0 

~all R12 -}- ~12 R22 = 0  

~21 /12  q- ~22 R22 = c](t- "c) 

(122) 

(123) 

(124) 

(125) 

where 3(t) is the "Dirac Delta Function". 

The reason for solving the equations in this way is that the equations 
for the R's are nearly identical to those already solved for G (1) and H (1). 
The only difference between the equations for the transforms of the R's 
and those for the first order solutions, Eqs. (101) and (102), is that instead 
of initial conditions on the right hand side, the equations for the transforms 
of the R's have right hand sides that are either zero or the transform of the 
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delta function which is simply e -e~. Carrying through the solution gives: 

0, t <  "c 

R l l ( t ' z ) =  111-- - - -  e'1('-~)4 ~12--(~22 e rt2(t-r), t > ' c  
L /~/1 - -  112 /'/2 - -  Y/1 

(126) 

0, 

e~1(t-O @ 
t r h - t12  

t<'c 

~(0)/~2@~521 e nz(t-~), f > ' c  (127) 
t12 - i h 

_ _  1 ( 1 2 8 )  1 etll(t_.c)_~.__erl2(t_.c) t>'[ 
R12(t , "C)= K1 ~12 t11 112 t12 -///1 ' 

0, t <  "c 

- . (129) R22(t , "c)= ill - K 1  (~11 eql(t_~)_]_/12 K1 (51l e~a(t-o, t>72 
I. ~11~-~ t/2 -- t/1 

From the expressions for fv(t) and f~(t), it can be seen that they have the 
forms: 

fv(t) = Fll e2~t't q- F12 e2n2t q-F13 e ("a+~2)t (130) 

L(t)=F21 e2""+Fg2 e2n2t q-F23 e I'~+'~)t. (131) 

Expressions for the F's are given in Appendix B. 
Carrying out the integrals indicated in Eqs. (119) and (120) yields the 

second order solutions which are naturally zero for t<0 .  For t >0,  they 
are: 

G(2)(0_ q_lZC~22 [Fll (e2~t~t_e, lt)q /712 (e2,2t_e,tlt) 
111 - t /2  L r h  2 r/2 - 111 

F13 (1+  2"{ ] ~]2--1~22 [_ F11 + - - ( e  n " ' - e  "it) 4 - - - - - -  (e 2n't ~ e ~a t~ 

/~2 J /72 - lh L2/'/1 --/']2 

F12 2 ,) + F13 ] -~--- (e ,2t -- eq2 (e(tll %- .2) t -- e/~2 t) 
t/2 /']1 

q (e 2",t _ e,l ,) + (e 2,2t _ e,1 t) 
rh - r/2 t t h  2 r] 2 - 111 

+ F23 r21 (e2.1, e.2 ) 
~2 2 I~i --/72 

F22 (e2q2t_el12t)_ F23 (eOll+q2)t_e~12t)] 
t] 2 I"] 1 

(132) 
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and 

H(2)(t)- 0{(0)/~/1-}-821 [ Fn (e2.,t_e.~t ) 
rh - q2 k ql 

-1 
(e 2"2t-  e"' *) + - l J  (e(n~+.2) t_  e,~ t)[ 

21/2 - r h 11/2 d 

~(~ [ Fn (e2,,,t_e.~)+F12(e2.~t_e,,at) 
/'/2 - - q l  2 t ] l  - -•2 •2 

] q i - K 1 8 1 i  [ ~  t + F13 (e("~+"~)'-e"~') q . . . .  (e 2"' --e "'t) (133) 
qi t/1 -172 

Fz2 (e2.~t_enlt)+F23 (e(.,+n2)t_e.l,)] 
2 r12 - ~h_ t12 

- [ , +I72 K1811 -~ F21 (e2.~, e . a )+__(e2n~ t_e .~ , )  
f]2 --/]1 [ Z~ F/1 - -  F]2 /12 

+ F23 (e(,1 +,2)t-  e,2')]. 
171 

Figs. 4 and 5 show graphs of the second order solutions for a sample 
case. 

8. Solution by Direct Numerical Integration 

The equations to be solved are (62) and (63) subject to the initial 
conditions at t = 0, 

V(0)= Vo (134) 

_S(0) =_S O . (135) 

To carry this out numerically, the time interval over which the solution 
is to be found is partitioned at times tl, t2, ... tN; where t 1 = 0  and t N is 
the largest time at which a solution is to be found, This gives N - 1  time 
intervals of time span, 

At~=t i+l - t i ,  i =  1, 2, ... ,  N -  1. (136) 

The time intervals are not necessarily equal. The values of _V(ti) and 
_S(ti) will be called ~ and .S~. Since V(t) and S(t) are differentiable functions, 

~=_V/_I + At~_l (137) 
- 1  
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where <dV_/dt>~_ 1 is the mean value of dI(/dt in the time interval A t~_ 1. 
Similarly, 

< d-~--tS 1 (138) _Si =_Si_l + A h- i  
--1 

If V/_ 1 and Si_  1 a r e  known, then dV/dt and dS/dt are known at time 
ti-l ,  but (dV/dt)i_ 1 and (dS_/dt>i_~ are not known and must be estimated 
in order to be able to estimate _Vii and _Si. The same procedure is then used 
for the next time interval and so forth. 

There are various means for estimating the mean values of the de- 
rivatives and thereby obtaining numerical estimates for _V and _S at each 
of the times t~. In general, they all become more accurate as the step sizes, 
A t~, are reduced. The simplest one is Euler's Method which estimates the 
mean value of a derivative in an interval by the value of that derivative 
at the beginning of the interval. In this method, 

<d~-tl ~_ d(d~) (139) 
- 1  t = t i - 1  

_ ~ ~ ,= , ,_  . (140) 

More complicated methods can give better estimates for the mean values 
of the derivatives, for fixed interval size, but require more numerical 
evaluations of (dV/dt) and (dS/dt). For example, the commonly used 
fourth-order Runge-Kutta procedure requires four calculations of both 
dV/dt and dS/dt for each integration step, as opposed to the single evalu- 
ations of each quantity required by Euler's Method. Thus, when numeri- 
cally integrating ordinary differential equations one must usually choose 
between simpler methods which use relatively little computer time per 
integration step, but which require relatively many steps, and more 
complicated methods which require more computer time per step, but 
which require less steps. 

One use of the red cell permeability equations is for the determination 
of cell membrane parameters by means of a comparison of the solutions 
of the equations with experimental measurements. Doing this most 
efficiently requires numerical and experimental evaluations of cell volume, 
and solute content if it is known experimentally, at identical values of time. 
As a result, there are benefits to making most of the numerical time steps 
equal to the time interval between data points, which is typically between 
5 and 50 msec. Therefore, we have chosen a numerical integration proce- 
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dure which is the simplest and most computationally efficient one giving 
good accuracy with most time intervals in the upper end of this range. 
Our results indicate that for most time intervals in the lower end of the 
range (5 to 10 msec) even the Euler Method is adequate. 

The method we have chosen is a two-step predictor-corrector method 
which requires two evaluations of both dV/dt and dS_/dt for each integration 
step. In the predictor step, values of_V and _S called _Vii and _ST are calculated 
by equations (137) and (138) using equations (139) and (140) for dV_/dt 
and dS/dt. For the corrector step, the integration is repeated using the 
average of the derivatives at (~-1,  _Si_l) and (~I,_S{) for the mean values 
in the interval A ti_ ~. The forms than taken by equations (137) and (138) 
are then: 

~v, i f  dV 

_ S 1 dS 

+ A ti_l (141) 
r=r[,_s=_s~ 

t + A ti_ 1. (142) 
v=_vl, s=_s 4 

The two steps are done sequentially before the integration in the next time 
interval is begun. 

For most cell membrane permeability experiments, dV/dt and dS/dt 
are largest near the beginning of the experiment because at that time, the 
jumps in thermodynamic potentials across the membrane are generally 
the largest. Therefore, the time steps should be smaller for the first few 
time steps than for succeeding steps. The following arrangement of time 
steps, illustrated in Fig. 5, has been found to be efficient and successful. 
First 1he total time for which the solution is desired is divided into equal 
time intervals called basic time integrals. The first four time intervals are 
then further subdivided. The third and fourth intervals are each divided 
in half. The second interval is divided into four equal parts. The first 
quarter of the first interval is divided into four equal parts (sixteenths of 
the interval). The remaining three quarters of the first interval is divided 
into six equal parts (eighths of the interval). The degree of accuracy of the 
complete calculation depends on the size of the basic interval. 

In performing the numerical integration, dV_/dt and dS_/dt are evaluated 
by Eqs. (62) and (63) for many values of _S and _V. These equations require 
values of rCm ~ c ~ a, b, _a, b, ~a, q~l, a, 11 and g2.  zr ~ _c ~ a and b are constants. 
a and _b are given by Eqs. (59) and (60). In terms of isotonic quantities and 
quantities known at each stage of the computation, Eq. (59) takes the 
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form 
- i so  i so  V 1 n a B~ B I 

(143) 

Similarly, if B; is assumed to have the form given by Eq. (70), Equation 
(60) takes the form, 

where 

r l - / ~ l i s ~  BwiSO B~ q , n ,  

( v - 1 ) + s  v1 c0 (144) 

B~ q = B~ s~ @ B '  (V eq - v is~  (145) 

9. Sample Calculations for Cases with One Permeable Solute 
and One or More Impermeable Solutes 

A digital computer program was prepared to evaluate Eqs.(108), 
(109), (132) and (133) for the first and second order perturbation solutions. 
Another program was prepared to carry out the numerical integration 
of Eqs. (62) and (63) according to the two step iterative procedure described 
in w Calculations were then made for three sample cases having the 
parameters shown in Table 1. 

The primary purpose of the first sample case is to compare the results 
of the two methods of solution of the equations. Cell membrane param- 
eters and solute concentrations were chosen to be roughly typical of 
what would be encountered in an experiment with human red cells (for 
some typical membrane parameters, s e e  reference9, p. 123). The case 
considered is one where the cells initially contain none of the impermeable 
solute and are suddenly put in a solution containing both permeable 
and impermeable solutes. The external impermeable solute concentration 
is set to the initial value of the internal impermeable solute concentration 
so that the cell volume is equal to the final equilibrium cell volume for 
constant _a and _b. Under such conditions, the cell first shrinks due to 
solvent moving out of the cell as a result of a higher external than internal 
total effective solute concentration. Permeable solute moves into the cell 
during this time, but the effect of the solvent flow on cell volume is much 
stronger than the effect of solute flow on volume. The solute flow into the 
cell and the solvent flow out of the cell each increase the internal solute 
concentration which slows the rate of solvent efflux. When the opposing 
volume flows of solvent efflux and solute influx are equal, shrinking stops 
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Table 1. Variables for the sample cases a 

Variable Value for Value for Value for 
first sample second sample third sample 
case case case 

Units 

Independent variables (specified) 
_a 0.15 0.15 
bc 0.20 0.20 
B~O/WSO 
Bi~s~ is~ 
B~o/v i~o 
V eq 1.0x 10 -l~ 1.11 x 10 -1~ 
ViSO 

A 1.67 X 10 -6 1.67 X 10 -6 

Lp 1.02 x 10 -11 1.02 x 10 -11 
a 0.65 0.65 
co 8.1 x 10 -1~ 8.1 x 10 -15 
V(O) 1.0 0.9 
S(0) 0.0 0.6 
c o 4.0x 10 -a 4.0x  10 -4  

c~ 2.0x 10 -4 2.0x 10 -~ 
RT 2.5 x 10 l~ 2.5 x 10 l~ 

Dependent variables (derived from specified variables) 
c_ ~ 2 2 
K 1 0.85 0.77 
K2 3.4 3.1 
~h 5.06 4.56 
t/2 0.84 0.76 

0.0 
0.15 
0.29 

0.92 x 10- lo 
1.67 x 10 -6 
0.85 x 10 -11 
0.60 
1.4 x 10-15 
vis~ 

0.0 
4.0 x 10- ~ 
2.0x 10 .4 
2.5 x 101~ 

2 

crn 3 

cm 3 

cm 2 

cm3/dyne-sec 

osmoles/dyne sec 

osmoles/dyne sec 
osmoles/dyne sec 
ergs/mole 

s e c  - I  

s e c  - 1  

s e c -  1 

s e c  - 1  

a These are typical membrane parameters and conditions drawn from references 1, 2, 3, 4, 
5, 6, 9, 15, 16, and 17. 

and  the m i n i m u m  cell v o l u m e  occurs.  P e r m e a b l e  solute con t inues  to enter  

the cell (co effect when  the v o l u m e  flow is zero) and  the increas ing  to ta l  

in terna l  solute  c o n c e n t r a t i o n  results  in solvent  en ter ing  the cell. Thus ,  

as t ime cont inues  to increase,  the cell v o l u m e  increases  and  a s y m p t o t i c a l l y  

a p p r o a c h e s  its final vo lume,  which  in this pa r t i cu la r  case equals  the initial 

vo lume .  

Fig. 3 shows the t ime course  of  cell v o l u m e  given by G (1), G (2), G m 

+ G (2) toge the r  wi th  the results  of  the numer i ca l  in t eg ra t ion  with  a basic  

t ime in terval  of  0.010 sec. Fig. 4 shows the c o r r e s p o n d i n g  results  for the 

a m o u n t  of  solute  in the cell. In p e r f o r m i n g  the numer i ca l  in t eg ra t ion  of 

Eqs. (62) and  (63) for the first s ample  case, b and  _b were  set equal  to the 

cons tan t  bc (0.20) and  _a was set equal  to the cons t an t  0.15 so tha t  the resul ts  

could  be direct ly  c o m p a r e d  with the p e r t u r b a t i o n  equa t i on  results.  
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V/V o 

0.98 

0.96 

0 . 9 4  

0.92 

0.90 

0.88 

0 . 8 6  [ -  

O.d 

BASIC TIME 
INTERVAL= 0.40 SECOND 

BASIC TIME 
INTERVAL = 0.10 SECON D 

0.2 0.4 
r I r I 

0.6 0.8 1.0 1.2 4 
TIME (SECONDS) 

Fig. 6. Cell volume v s .  time for first sample case, calculated by direct numerical integration 
for two different basic time intervals 

Fig. 6 shows _V as determined by numerical integration for two different 

basic time intervals, 0.100 and 0.400 sec. Fig. 7 shows the corresponding 
results for S. The results for the time interval of 0.100 sec are indistin- 

guishable from those for a time interval of 0.0100 sec, for which calculations 
were also made. 

The case described above is a strong enough deviation from equilib- 
rium for even the sum of first and second order perturbation solutions to 
be slightly different than the solutions given by numerical integration. 
The second sample case was chosen to determine the errors in the per- 
turbation theory for a weaker deviation from equilibrium. For  the second 
case, the difference in conditions from the first case were in the following 
parameters:  V(0)=0.9, V eq = 1.11 x 10 -1~ cm and S o =0.6. For this case, 
the results of the sum of first and second order perturbation solutions 
were indistinguishable from those of direct numerical integration (figures 
for this case are not shown). 
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BASIC TIME INTERVAL=0.40 SECOND ~ - - - - - - - " -  

1.4 

1.2 

1.0 

S 

0 .8  

0 .6  

0 .4  

0 .2  
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O.C I I I I I I I 
0 .0  0.2 0.4 0.6 0.8 1.0 1.2 1.4 

TIME (SECONDS) 

Fig. 7. Permeable solute in cell v s .  time for first sample case, calculated by direct numerical 
integration for two different time intervals 

The preceeding calculations confirm the validity of solutions obtained 
by direct numerical integration. Because of the convenience of incorporating 
variations of a and b during cell volume changes and of including the 
effect of solvent specific volume on osmotic pressure, direct numerical 
integration was used to evaluate these effects in the third sample case. 
The situation considered here is that of human red blood cells, which 
are initially in a salt buffer of 0.280 osmolality, being suddenly placed in 
a solution containing salt osmolality of 0.200 and a urea osmolality of 
0.400. All conditions and parameters except for B' and ~ are given in 
Table 1. Four calculations were made with different combinations of 
values of B' and ~ as given in Fig. 8. From Fig. 2, over the anticipated 
range of cell volume, B ' = - 0 . 3 2 5 .  For urea, ~=44 .1cm3/mole .  The 
numerical integrations of Eqs. (62) and (63) were done with a and _/2 varying 
during the shrinking and swelling processes according to Eqs. (59), (60) 
and (71). 
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t / 
i 

J 

104 / ~ _  - . . . . .  
5 
lad 

o ~ ~> ~ 10096 - S ' "  

--J / / / 7  SYMBOL V s d b / d V  
..J /" ./,2" j y  . . . .  o . . . . .  o 

J 44. I cm~ 0 
c.) 92 ~ o -o.325 

,~--~'-.,JS 44. I cm /mole - O. 325 

8 8 -  
I I I I I I J I I 

0.0 0.2 0.4 0.6 0.8 1.0 i,2 1.4 1.6 1.8 
TiME (SECONDS) 

Fig. 8. Effects of solute specific volume and variation of nonsolvent water on a computed red 
cell shrink-swell curve. Lp = 0.85 x 10-11 cm3/dyne_sec, er = 0.60. co = 1.4 x 10-14 moles/dyne- 
sec. External permeable solute concentration=0.400 Osmolal. External impermeable solute 
concentration=0.200 Osmolal. The osmotic coefficient of urea is 0.96 so Vs can be taken as 

44.9 cm3/osmoIe 

The calculated cell volumes vs. time for the four cases are shown in 

Fig. 8. The conclusions reached from these calculations are discussed in 

the next section. 

10. Conclusions 

The conclusions drawn from this work are divided into those that 

relate mainly to the mathematics of the red cell permeability equations 
and those that relate mainly to the biology of red cell shrink-swell ex- 

periments. The mathematical  conclusions are discussed first. 

We have shown that the solutions to the permeability equations by 

the two term perturbat ion expansion are consistent with those of direct 
numerical integration for small enough perturbations from equilibrium. 
The first term of the perturbat ion expansion alone (linearized theory), 
which has been used extensively in the literature in this field, is inadequate 
for some typical experimental conditions (see Figs. 3 and 4). Adding the 
second order solutions results in substantial improvement  in accuracy. 
Assuming the results of the direct numerical integration are correct, even 
the sum of first and second order perturbation results has a small, but  
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noticeable, error for the conditions of the first sample case. Presumably 
third and higher order theory would improve the perturbation theory 
results further. 

There is every indication that direct numerical integration by the 
two-step procedure given in w 8 yields the correct solution. The solution 
converges as the basic time interval is made smaller and smaller; and this 
solution is approached by the perturbation solution as the perturbation 
is made small, with the sum of first and second order perturbation results 
approaching more closely than the first order results alone. 

If a user has the availability of a digital computer, the direct integration 
technique is highly recommended, both because of its accuracy and its 
versatility. Any functional dependence of a, _b, Lp, o-, and co on concentra- 
tions and cell volume can be accommodated. All that is needed is to set 
these parameters to their appropriate values at each point in time during 
the integration, including the points corresponding to (~S,_S/r) so as to 
most accurately estimate the derivatives in the ( i -1 )  st  interval. 

The calculations of the first sample case form a basis for determination 
of the needed basic time interval for direct numerical integration. The 
salient part of the system of equations has two characteristic times 1/r h 
and 1/~12.1/~72 is the smaller time, which for the sample case has the value 
of 1.19 sec. It was found that error due to finite time step size was negligible 
if the basic time step was 0.100 sec or less. This indicates that the basic 
time interval should be taken as 1/(12 x ~2) or less. 

Solving the permeability equations for the third sample case has led 
to two important biological results for red cell shrink-swell experiments. 
The first is the effect of the variable volume occupied by the permeable 
solute in the cell. The third sample case (Fig. 8) shows that for 0.4 osmolal 
urea, the difference in cell volume for the case in which the urea volume 
in the cell is taken into account and that in which it is not, is about 1 #3. 
This difference is small in comparison to the total cell volume of about 
100 #3, but it is appreciable with respect to the total volume change during 
the shrink-swell process which is about 20/~3 It is this change in volume 
and its rate of change that are affected by the membrane parameters in a 
shrink-swell process so that accurate results require that errors be small 
with respect to the volume change. For the sample case, the cell volume 
error caused by neglecting the volume occupied by the permeable solute 
is about 5 ~o of the total volume change. This effect is directly proportional 
to both the permeable solute concentration and its specific volume. 

The second biological result shown is the effect of the variation of B2 
during a shrink-swell experiment. For the third sample case, the effect 
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of the B2 dependence reported by Gary-Bobo and Solomon [5] is about 
2 #3, which is about 10~o of the total volume change in the shrink-swell 
process. Since some membrane parameters are determined from differences 
in various quantities, a 5 ~ to 10~o error in volume calculation can lead 
to substantially larger errors in estimated parameters. Thus, this effect 
must be taken into account if accurate results are to be achieved. This can 
be done directly in solving the equations by direct numerical integration, 
as was done in the sample case, or can be closely approximated in any 
method of solution by replacing both b and _b by the quantity b c given in 
Eq. (70). 

These efficient and accurate methods of solving the membrane perme- 
ability equations can lead to useful results. One use is for examining the 
accuracy of experimental techniques. For example, determination of o- 
by the "zero-time slope" method of Goldstein and Solomon [6] requires 
knowledge of the rate of change of cell volume at the instant of mixing the 
cells with a nonisosmolal solution. This cannot be measured exactly. For 
example, Owen and Eyring [12] estimated the zero-time rate of change 
by the measured rate of change at times between 25 and 50 msec after 
mixing. We have solved the membrane permeability equations by the 
methods of this paper for the conditions of the experiments of Owen and 
Eyring and thereby have determined the error that would exist in estimates 
of o- by use of rates of volume change at various times after mixing in place 
of the zero-time rate of change. Typically, the error introduced in an 
estimate of a by use of rates of change at times between 25 and 50 msec 
after mixing, instead of that immediately after mixing, is about 33 ~.  

Other important questions concern the dependence of the membrane 
parameters on concentration, cell volume and flow direction. The kinds 
of questions that can be addressed include: does Lp depend on the direction 
of flow through a red cell membrane;  is co constant, or is Lv constant, or 
is neither constant as ~s varies during the course of a shrink-swell experi- 
ment; and does the red cell membrane really behave as a simple perme- 
ability barrier? Essentially any variation of the membrane parameters 
during the course of a shrink-swell experiment can be accommodated in the 
solution of the equations by direct numerical integration. This means 
that the accuracy of the answers to these sorts of biological questions are 
now limited only by the accuracy of the experimental measurements 
themselves. 

Supported in part by the Energy Research and Development Administration under 
contract number E (11-1)-3010. 
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A 
_a 

b 
b' 
bc 
Bj 

Bw 
cj 

C m 

Co 

C w 

Jr 
Jw 
k 

n3 

gl m 

l'l w 

P 
P 

R 
S 

S_ 

T 

V 
veq 
viso 

_V 

Vo 
vj 
vw 
x j  

X 

i 

0 

0 

~q 

iso 

TC 

Nomenclature 
- c e l l  surface area. 
-dimensionless  nonsolvent volume for permeable solute. 
- apparent dimensionless nonsolvent volume for impermeable solute. 
- db_/dV. 

- ( b  - b ' ) / ( 1  - b ' ) .  

- apparent volume of the solvent in the cell which does not participate in dissolving 
the jth solute. 

- volume of cell that is not solvent or solute. 
-concent ra t ion  of the jth solute (osmoles/volume). 
- concentration of impermeable solutes (osmoles/volume), 
- normalizing concentration. 
- concentration of solvent (osmoles/volume). 
- f l o w  of the jth solute into the cell (osmoles/area x time). 
- flow of the solvent into the cell (osmoles/area x time). 
- number of solutes. 
- a m o u n t  of jth solute in cell (osmoles). 
- amount  of impermeable solute in cell (osmoles). 
- amount  of solvent in cell (osmoles). 
-Lap lace  Transform variable (time-1). 
-hydrau l i c  pressure (force/area). 
- g a s  constant (energy/~ x osmoles). 
- a m o u n t  of solute (osmoles = moles x osmotic coefficient). 
- normalized amount of solute. 
- temperature (~ 
- cell volume (length3). 
- equ i l ib r ium cell volume. 
- isotonic cell volume. 
- normalized cell volume. 
- normalizing volume (length3). 
- pa r t i a l  molar volume of jth solute (length3/osmole). 
- p a r t i N  molar volume of solvent (length3/osmole). 
- m o l e  fraction of jth solute. 
-- generalized "force". 
- a s  superscript, refers to region inside cell. 
- a s  superscript, refers to region outside cell. 
- a s  subscript, refers to a reference quantity for normalization. 
- as underscore, denotes a normalized quantity. 
- as superscript, refers to the equilibrium value of a quantity. 
- as superscript, refers to the quantity in the isotonic condition. 
- perturbation parameter. 
- total osmotic pressure (force/area). 
- osmotic pressure of the ith solute (force/area). 

4h = c~ ~ -  volume fraction of the ith solute inside the cell. 

(•w 

# i  

/lw 
(1) 
(2) 

- v o l u m e  fraction of solvent inside the cell. 
- dissipation function (energy/area x time). 
- t h e r m o d y n a m i c  potential for the i tu solute (energy/osmole). 
- thermodynamic potential for the solvent (energy/osmole). 
- as superscript, designates a first order quantity. 
- as superscript, designates a second order quantity. 
- a s  superscript, designates the Laplace Transform of the corresponding unstarred 

variable. 
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A Note on the Uniqueness of the Solution 
to the Membrane Permeability Equations for Cells 

Eqs. (62) and (63) are a pair of coupled, first-order, nonlinear differential 
equations for the dependent variables V and _S which depend on the 
independent variable t. Substitution of Eq. (62) in Eq. (63) for dV_/dt allows 
the equations to be written in the form 

and 

dV 
dt =f(V,, S) (A 1) 

dS 
dt S) (A 2) 

where f is the right hand side of Eq. (62) and g is the right hand side of 
Eq. (63) after the aforementioned substitution for dV/dt has been made. 

The question to be considered here is whether, for a given set of initial 
values for _Vand _S, a unique solution to Eqs. (A 1) and (A2) exists. If the 
solution is not unique, integration of Eqs. (62) and (63) could lead to a 
solution that is not representative of the physiological situation being 
modeled by the equations. 

A well-known mathematical result (see, e.g., reference 1) is that the 
solution is unique in any domain of ranges of values of _1,1 and S for which 
there exists a constant K, such that for every ~ ,  1/2, _S 1 and S in the domain, 

[ f ( ~ ,  _$1)- f(_V2, _5'2)] 2 +l-g (_V,, _$1)- g(Y2,--52)] 2 

< K2 [(-V1 - -]72) 2 -~ (~1 - -  •2) 2]  (A 3) 

(A 3) is called a Lipschitz Condition and K is called the Lipschitz constant. 
Examination of the terms making up f and g shows that a Lipschitz 
Condition is satisfied for all physically realizable conditions except for 
the special and important condition; _S=0. This occurs when the initial 
condition is that of no permeable solute in the cell. 

The asymptotic limits of Eqs. (62) and (63) as S approaches zero are: 

L imdV [ 1 - b  ] 
_s-o dt -=K1 V - b - 1 - a - c ~  (A4) 

L i m d S  [ 1 - b  ] 
s+o ~ - = ~ 1 ( 1 - 0 )  V - b  - 1 - a c ~  +K2c~ (A5) 
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~ can be written in the form: 

S 
C-~ V - a  

_~1 = (A6) 
S 

In -co_ In V -  a 

If_~l is considered as a function of _S, 

_~a(0)=0. (A7) 

If K 2 =~ 0 when S = 0, Lira ~ = K 2 c o and Eqs. (62) and (63) have a unique 
- s~o dt 

solution in the mathematical  ne ighborhood of _S = 0 and since a Lipschitz 
Condi t ion is satisfied for all other positive values of S, a unique solution 
exists for all physically realizable values of _S and _V. 

If, on the other hand, K 2 = 0 when _S = 0, it is easily shown that  Eqs. (A 4) 
and (A5) have an infinite number  of solutions which correspond to an 
infinite number  of solutions to Eqs. (62) and (63). The case of K 2 = 0 when 
S = 0 is of some interest because it corresponds to finite values of L d and 
Lp when _S = 0 because of Eq. (A 7). 

If one considers arbitrary initial values of _S and requires that  the 
solutions of Eqs. (62) and (63) be uniformly cont inuous functions of S for all 
nonnegative _S, including S = 0 ,  the solutions satisfying this requirement  
are then unique. Examinat ion  of Eqs. (A 5) and (A 6) show that the other 
nonunique  solutions are those for which _S=0 for a finite t ime interval, 
not  just the initial time. 

Therefore, an alternative requirement,  sufficient for uniqueness, and 
equivalent to the aforement ioned continuity requirement  is that  S + 0  at 
any time other than the initial time. Thus, if the initial t ime is t = 0 ,  the 
uniqueness requirement  for K 2 --= 0 when _S = 0 is: 

_S+0 when t > 0 .  (A8) 

Appendix B 

Coefficients for the Inhomogenous Part 
of the Second Order Perturbation Equations 

The form of Eqs. (96) and (97) indicate that f~,(t) and fs(t) have the forms 
given by Eqs. (130) and (131). To determine the coefficients F/j, the expres- 
sions (130) and (131) are substi tuted into Eqs. (96) and (97), and terms in 
the various exponential  functions are combined.  
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All - 

A12~ 

A21 = 

A22 - 

p(O) = 

The F~fs are given in terms of the following definitions: 
111 Go + (g 

r/1 - -  ~12 

~2 Go + Cg 
r/2 -t h 

~1 Ho + ~h 
rh -r/2 

~72 Ho + ~h 
q2 -r/1 

C O [71 
2 (1 + 0~ (1 - a) 

p(1)=_2(O)(l_a) p(o ) fi(~176 
2(1 - a )  

C I = K 1  [ 0--[-fl(0)(1-0-)(1Z~ ~ P(0)(1--a)i~ t (~~176 ] 

C2 = K 1 p(~ K 1 a 
- 2(O)(l_b~) ( l - - a )  2 

C3= K2 2(0) fl (0) K 2 fl(~176 K 2 p(~176 
- -  ( l - - a )  2 (1-be)  2 ~ 1 -b~  

K2 .~(o) p(O) 

(B 1) 

(B2) 

(B 3) 

(B4) 

(B 5) 

(B6) 

(B 7) 

(B 8) 

(B9) 

C4 _= K2 p(o) 
2(~ - a) 

l - a  

(B 1 O) 

K2 fl(o) K2 p(O)(2 fi(o)_ 1) 2 K 2 p(O) 
C5-  (iZa-)5 t 2(O)(l_bc) 1 - a  (B 11) 

Then: 

Fll = C1 A~I + C2 All A21 

El2 = C 1 A22 + C 2 A12 A22 

F13 =2 C 1 All A12 + C2(A12 A22 +AI2A21 ) 

F21 ~-- C3 A121 ~- C4. All  -]- C5 111 N21 -~- F[1 All / 0(1) A11 -~-~~12i 

( 1 ) 
F22= C3 A22 -~- Cd-Ai2~- C5 M12 A22 -~-/~2 112 D (1) N 1 2 - ~ - ~ 1 2 2  

F23=2C 3 All AI2 + 2 C4 A21 A22+ Cs(All A22 + A12 A2~ 
+ g]l All R(1)(A12 -- A22) + ~2 A12 P(1)(All - -  A21)- 

(B J2) 

(U ~3) 

(B 14) 

(B ~5) 

(B 16) 

(B 17) 
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Appendix C 

How to Use the Membrane  Permeabil i ty  Equations for  Red Cells 

There are two basic uses for the equations. The first is to make theo- 
retical predictions of cell volume and solute content as functions of time 
for any prescribed set of physical conditions and cell membrane param- 
eters. The way to do this is described below. The second basic use is 
application of the equations to experimental results of cell volume (and/or 
solute content) vs. time to determine the cell membrane parameters, 
which may be constant or variable during the course of the experiment. 
The way to do this will be given in a subsequent paper. 

The first use will now be described in sufficient detail to allow the reader 
to make theoretical predictions of cell volume and solute content vs. time 
for the case of one permeable solute and one or more impermeable solutes. 
If a digital computer is available, direct numerical integration is recom- 
mended. If the equations are to be solved by "hand"  calculation, the 
perturbation equations should be used if the cell membrane parameters 
(L v, a, co) are constants. 

The quantities to be specified by the user are L v, a, co, A, B 1 , 1~2, Bw, 
c~(0), %is~ c,,,~ SilO, S(0), C ~ R, T, ~ ,  V(0) and V eq. V eq (which is used for 

the normalizing volume, V0, in this development) is the cell volume at the 
final equilibrium. If the cell volume and solute content are known at some 
other condition, called the isosmolal condition, Eq. (72) is to be used to 
determine V eq. It will be assumed here that B 2 is given by Eq. (71) so that 
B 2 is determined by B~ ~~ and B' which are to be specified by the user. The 
equations to be solved are Eqs. (62) and (63) with gl  defined by Eqs. (8) 
and (54). Kt,  K 2, _a and b are to be determined from Eqs. (57), (58), (59) 
and (60). 

The perturbation equations in the form given here can be used for 
cases where K1, K2, a, and a are well approximated by constants. Both b 
and b should be given the value bc (Eq. 70). 

With _V eq and S ~q given by Eqs. (66) and (68), Go and Ho are determined 
from Eqs. (74) and (75) by using _V(0) and S(0) for _Vand _S in these equations. 
The 2's and/3's, cS's and c~'s are next calculated from Eqs. (82) through (91). 
~h, 172, ~g and ~h are to be determined from Eqs. (103), (104) and (105). 

The first order solutions given by Eqs. (108)and (109) can then be 
evaluated. The first step in determining the second order perturbation 
solutions is determining the A's, p's and C's in Appendix B by use of 
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Eqs. (B 1) through (B 11). Next, the F's are determined by Eqs. (B 12) through 
(B 17). Then, Eqs. (132) and (133) for the second order solutions, G (2) and 
H (2), can then be evaluated. 

G and H are then estimated by 

and 

G(t)=G(1)(t)+G(2)(t) 

H(t)=H(X)(t)+H(2)(t). 

(C 1) 

(C2) 

Remember that G and H are the deviations of Vand S from the equilibrium 
values g eq and _S eq given by Eqs. (66) and (68). V and S are found by multi- 
plication of _V and _S by V eq and V eq c ~ respectively. 

If a digital computer is available, direct numerical integration is the 
preferred method of solving Eqs. (62) and (63). First the basic time interval 
must be determined. There are two ways this can be done. The first is to 
follow the procedure given above to determine r/2. As described in Conclu- 
sions, the error due to finite time step size was found to be negligible if the 
basic time interval was less than 0.083/~72. Therefore, a "safe choice" of 
the basic time interval is 0.05/r/2. The other way is to use experimental 
results for the conditions being considered if they are available and if 
the cells did not hemolyze during the experiment. Reference to the cases 
given as examples shows that a "safe choice" of basic time interval is 2 
of the time from the start of volume or solute change to the time at which 
about 95 ~o of the total volume and solute changes have occurred. 

Once the basic time interval has been determined; the partitioning 
times, ti, as illustrated by the vertical bars in Fig. 5, are determined and 
the individual time intervals are given by Eq. (136). t I is the initial time 
(zero) and at this time _V and S have the values _V(0) and _S(0). The solution 
(values of_V and S) is given at successive values of t i by Eqs. (141) and (142). 
Application of these equations to determine _Vii and _Si when ~-1  and 
_Si_l are known requires numerical values for dV/dt and dS_/dt for two 
conditions: first when t = fi-1, and second for the hypothetical condition 
of V = ~ f  and S_=S[. Eqs. (62) and (63) give d_V/& and dS/dt for any pre- 
scribed values of _V and _S. When determining _V/ and _Si from Eqs. (143) 
and (144), ~ -1  and _Si_ 1 are known so Eqs. (62) and (63) yield (dV/dt)t=ti_l 
and (dS/dt),=ti 1. _Vir and _S{ are the values o f ~  and _Si given by Eqs. (137) 
and (138). Then Eqs. (143) and (144) are used again to determine 
(dV/d t)y = y:,_s = s: and (dS_/d t)y = y{, 5 = s{" 
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